
 Information Security

1

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING
(AUTONOMOUS)

L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

DEPARTMENT

OF

INFORMATION TECHNOLOGY

Information Security (20CS61)

B.TECH VI SEMESTER

R20

 Information Security

2

INDEX

S.

NO

DATE EXPERIMENT PAGE NO SIGNATURE

1 Implement any two Substitution

Techniques
3-7

2 Implement any two Transposition

Techniques
8-13

3 Implement any two Symmetric

Algorithms
14-17

4 Implement any two Private-Key based

Algorithms
18-19

5. Explore any four network diagnosis

tools.
20-23

6. Study about Wireshark packet sniffer

tool in promiscuous and non-

promiscuous mode

24-31

7. Download and install nmap . Use it with

different options to scan open ports, do a

ping scan, tcp port scan, udp port scan.

32-43

8.

IPtables in linux
44-47

9. Demontrate intrusion detection

system(ids) using any tool(snort or any

other s/w)

48-50

 Information Security

3

Experiment – 1
Aim: Implement any two Substitution Techniques using python script.

Algorithm for Substitution Cipher:

Input:

• A String of both lower and upper case letters, called Plaintext.

• An Integer denoting the required key.

Procedure:

• Create a list of all the characters.

• Create a dictionary to store the substitution for all characters.

• For each character, transform the given character as per the rule, depending on whether we’re

encrypting or decrypting the text.

• Print the new string generated.

Program: 1)

import string

A list containing all characters

all_letters = string.ascii_letters

create a dictionary to store the substitution for the given alphabet in the plain text based on key

key = 4

dict1 = {all_letters[i]: all_letters[(i+key) % len(all_letters)] for i in range(len(all_letters))}

Plaintext to be encrypted

plain_txt = "I am studying Data Encryption"

loop to generate ciphertext

cipher_txt = ''.join([dict1[char] if char in all_letters else char for char in plain_txt])

print("Cipher Text is: ", cipher_txt)

create a dictionary to store the substitution for the given alphabet in the cipher text based on the key

dict2 = {all_letters[i]: all_letters[(i-key) % len(all_letters)] for i in range(len(all_letters))}

loop to recover plaintext

decrypt_txt = ''.join([dict2[char] if char in all_letters else char for char in cipher_txt])

print("Recovered plain text: ", decrypt_txt)

2)

Python program to demonstrate

Substitution Cipher

import string

A list containing all characters

all_letters= string.ascii_letters

create a dictionary to store the substitution for the given alphabet in the plain text based on the key

dict1 = {}

key = 4

for i in range(len(all_letters)):

dict1[all_letters[i]] = all_letters[(i+key)%len(all_letters)]

plain_txt= "I am studying Data Encryption"

cipher_txt=[]

loop to generate ciphertext

for char in plain_txt:

if char in all_letters:

temp = dict1[char]

 Information Security

4

cipher_txt.append(temp)

else:

temp =char

cipher_txt.append(temp)

cipher_txt= "".join(cipher_txt)

print("Cipher Text is: ",cipher_txt)

#create a dictionary to store the substitution for the given alphabet in the cipher text based on key

dict2 = {}

for i in range(len(all_letters)):

dict2[all_letters[i]] = all_letters[(i-key)%(len(all_letters))]

loop to recover plain text

decrypt_txt = []

for char in cipher_txt:

if char in all_letters:

temp = dict2[char]

decrypt_txt.append(temp)

else:

temp = char

decrypt_txt.append(temp)

decrypt_txt = "".join(decrypt_txt)

print("Recovered plain text :", decrypt_txt)

Output:

The Playfair Cipher Encryption Algorithm:

The Algorithm consists of 2 steps:

1. Generate the key Square(5×5):

a. The key square is a 5×5 grid of alphabets that acts as the key for encrypting the plaintext.

Each of the 25 alphabets must be unique and one letter of the alphabet (usually J) is

omitted from the table (as the table can hold only 25 alphabets). If the plaintext contains

J, then it is replaced by I.

b. The initial alphabets in the key square are the unique alphabets of the key in the order in

which they appear followed by the remaining letters of the alphabet in order.

2. Algorithm to encrypt the plain text: The plaintext is split into pairs of two letters (digraphs). If

there is an odd number of letters, a Z is added to the last letter.

Program:

Python program to implement Playfair Cipher

Function to convert the string to lowercase

def toLowerCase(text):

return text.lower()

Function to remove all spaces in a string

def removeSpaces(text):

newText = ""

for i in text:

if i == " ":

continue

 Information Security

5

else:

newText = newText + i

return newText

Function to group 2 elements of a string

as a list element

def Diagraph(text):

Diagraph = []

group = 0

for i in range(2, len(text), 2):

Diagraph.append(text[group:i])

group = i

Diagraph.append(text[group:])

return Diagraph

Function to fill a letter in a string element

If 2 letters in the same string matches

def FillerLetter(text):

k = len(text)

if k % 2 == 0:

for i in range(0, k, 2):

if text[i] == text[i+1]:

new_word = text[0:i+1] + str('x') + text[i+1:]

new_word = FillerLetter(new_word)

break

else:

new_word = text

else:

for i in range(0, k-1, 2):

if text[i] == text[i+1]:

new_word = text[0:i+1] + str('x') + text[i+1:]

new_word = FillerLetter(new_word)

break

else:

new_word = text

return new_word

list1 = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'k', 'l', 'm',

'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']

Function to generate the 5x5 key square matrix

def generateKeyTable(word, list1):

key_letters = []

for i in word:

if i not in key_letters:

key_letters.append(i)

compElements = []

for i in key_letters:

if i not in compElements:

compElements.append(i)

 Information Security

6

for i in list1:

if i not in compElements:

compElements.append(i)

matrix = []

while compElements != []:

matrix.append(compElements[:5])

compElements = compElements[5:]

return matrix

def search(mat, element):

for i in range(5):

for j in range(5):

if(mat[i][j] == element):

return i, j

def encrypt_RowRule(matr, e1r, e1c, e2r, e2c):

char1 = ''

if e1c == 4:

char1 = matr[e1r][0]

else:

char1 = matr[e1r][e1c+1]

char2 = ''

if e2c == 4:

char2 = matr[e2r][0]

else:

char2 = matr[e2r][e2c+1]

return char1, char2

def encrypt_ColumnRule(matr, e1r, e1c, e2r, e2c):

char1 = ''

if e1r == 4:

char1 = matr[0][e1c]

else:

char1 = matr[e1r+1][e1c]

char2 = ''

if e2r == 4:

char2 = matr[0][e2c]

else:

char2 = matr[e2r+1][e2c]

return char1, char2

def encrypt_RectangleRule(matr, e1r, e1c, e2r, e2c):

char1 = ''

char1 = matr[e1r][e2c]

char2 = ''

char2 = matr[e2r][e1c]

return char1, char2

def encryptByPlayfairCipher(Matrix, plainList):

CipherText = []

 Information Security

7

for i in range(0, len(plainList)):

c1 = 0

c2 = 0

ele1_x, ele1_y = search(Matrix, plainList[i][0])

ele2_x, ele2_y = search(Matrix, plainList[i][1])

if ele1_x == ele2_x:

c1, c2 = encrypt_RowRule(Matrix, ele1_x, ele1_y, ele2_x, ele2_y)

Get 2 letter cipherText

elif ele1_y == ele2_y:

c1, c2 = encrypt_ColumnRule(Matrix, ele1_x, ele1_y, ele2_x, ele2_y)

else:

c1, c2 = encrypt_RectangleRule(

Matrix, ele1_x, ele1_y, ele2_x, ele2_y)

cipher = c1 + c2

CipherText.append(cipher)

return CipherText

text_Plain = 'instruments'

text_Plain = removeSpaces(toLowerCase(text_Plain))

PlainTextList = Diagraph(FillerLetter(text_Plain))

if len(PlainTextList[-1]) != 2:

PlainTextList[-1] = PlainTextList[-1]+'z'

key = "Monarchy"

print("Key text:", key)

key = toLowerCase(key)

Matrix = generateKeyTable(key, list1)

print("Plain Text:", text_Plain)

CipherList = encryptByPlayfairCipher(Matrix, PlainTextList)

CipherText = ""

for i in CipherList:

CipherText += i

print("CipherText:", CipherText)

Output:

 Information Security

8

Experiment – 2
Aim: Implement any two Transposition Techniques using python script.

Description:

In a transposition cipher, the order of the alphabets is re-arranged to obtain the cipher-text.

1. The message is written out in rows of a fixed length, and then read out again column by column,

and the columns are chosen in some scrambled order.

2. Width of the rows and the permutation of the columns are usually defined by a keyword.

3. For example, the word HACK is of length 4 (so the rows are of length 4), and the permutation is

defined by the alphabetical order of the letters in the keyword. In this case, the order would be “3 1

2 4”.

4. Any spare spaces are filled with nulls or left blank or placed by a character (Example: _).

5. Finally, the message is read off in columns, in the order specified by the keyword.

Decryption

1. To decipher it, the recipient has to work out the column lengths by dividing the message length by

the key length.

2. Then, write the message out in columns again, then re-order the columns by reforming the key

word.
Program: (simple code)

import math

key = "HACK"

def encryptMessage(msg):

k_indx, msg_len = 0, float(len(msg))

msg_lst = list(msg) + ['_' * int((math.ceil(msg_len / len(key))) * len(key) - msg_len)]

matrix = [msg_lst[i: i + len(key)] for i in range(0, len(msg_lst), len(key))]

return ''.join([matrix[j][key.index(sorted(list(key))[k_indx])] for k_indx in range(len(key)) for j in

range(len(matrix))])

def decryptMessage(cipher):

k_indx, msg_indx, msg_len = 0, 0, float(len(cipher))

msg_lst = list(cipher)

key_lst = sorted(list(key))

dec_cipher = [[None] * len(key) for _ in range(int(math.ceil(msg_len / len(key))))]

for k_indx in range(len(key)):

curr_idx = key.index(key_lst[k_indx])

 Information Security

9

for j in range(int(math.ceil(msg_len / len(key)))):

dec_cipher[j][curr_idx] = msg_lst[msg_indx]

msg_indx += 1

try:

msg = ''.join(sum(dec_cipher, []))

except TypeError:

raise TypeError("This program cannot", "handle repeating words.")

null_count = msg.count('_')

return msg[: -null_count] if null_count > 0 else msg

msg = "Geeks for Geeks"

cipher = encryptMessage(msg)

print("Encrypted Message: {}".format(cipher))

print("Decrypted Message: {}".format(decryptMessage(cipher)))

Output:

Given a plain-text message and a numeric key, cipher/de-cipher the given text using Rail Fence

algorithm.

The rail fence cipher (also called a zigzag cipher) is a form of transposition cipher. It derives its name

from the way in which it is encoded.

Examples:

Encryption

Input : "GeeksforGeeks "

Key = 3

Output : GsGsekfrek eoe
Decryption

Input : GsGsekfrek eoe

Key = 3

Output : "GeeksforGeeks "
2) Encryption

Input : "defend the east wall"

Key = 3

Output : dnhaweedtees alf tl
Decryption

Input : dnhaweedtees alf tl

Key = 3

Output : defend the east wall
3) Encryption

Input : "attack at once"

Key = 2

Output : atc toctaka ne
Decryption

Input : "atc toctaka ne"

Key = 2 Output : attack at once

 Information Security

10

Program-2:

import math

key = "HACK"

Encryption

def encryptMessage(msg):

cipher = ""

track key indices

k_indx = 0

msg_len = float(len(msg))

msg_lst = list(msg)

key_lst = sorted(list(key))

calculate column of the matrix

col = len(key)

calculate maximum row of the matrix

row = int(math.ceil(msg_len / col))

add the padding character '_' in empty

the empty cell of the matix

fill_null = int((row * col) - msg_len)

msg_lst.extend('_' * fill_null)

create Matrix and insert message and

padding characters row-wise

matrix = [msg_lst[i: i + col]

for i in range(0, len(msg_lst), col)]

read matrix column-wise using key

for _ in range(col):

curr_idx = key.index(key_lst[k_indx])

cipher += ''.join([row[curr_idx]

for row in matrix])

k_indx += 1

return cipher

Decryption

def decryptMessage(cipher):

msg = ""

track key indices

k_indx = 0

track msg indices

msg_indx = 0

msg_len = float(len(cipher))

msg_lst = list(cipher)

calculate column of the matrix

col = len(key)

calculate maximum row of the matrix

row = int(math.ceil(msg_len / col))

convert key into list and sort

alphabetically so we can access

each character by its alphabetical position.

 Information Security

11

key_lst = sorted(list(key))

create an empty matrix to

store deciphered message

dec_cipher = []

for _ in range(row):

dec_cipher += [[None] * col]

Arrange the matrix column wise according

to permutation order by adding into new matrix

for _ in range(col):

curr_idx = key.index(key_lst[k_indx])

for j in range(row):

dec_cipher[j][curr_idx] = msg_lst[msg_indx]

msg_indx += 1

k_indx += 1

convert decrypted msg matrix into a string

try:

msg = ''.join(sum(dec_cipher, []))

except TypeError:

raise TypeError("This program cannot", "handle repeating words.")

null_count = msg.count('_')

if null_count > 0:

return msg[: -null_count]

return msg

Driver Code

msg = "I am studying Data Encryption"

cipher = encryptMessage(msg)

print("Encrypted Message: {}". format(cipher))

print("Decryped Message: {}".

format(decryptMessage(cipher)))

Output:

Encryption

In a transposition cipher, the order of the alphabets is re-arranged to obtain the cipher-text.

• In the rail fence cipher, the plain-text is written downwards and diagonally on successive rails of

an imaginary fence.

• When we reach the bottom rail, we traverse upwards moving diagonally, after reaching the top

rail, the direction is changed again. Thus the alphabets of the message are written in a zig-zag

manner.

• After each alphabet has been written, the individual rows are combined to obtain the cipher-text.

For example, if the message is “GeeksforGeeks” and the number of rails = 3 then cipher is prepared

as:

 Information Security

12

.’.Its encryption will be done row wise i.e. GSGSEKFREKEOE

Decryption

As we’ve seen earlier, the number of columns in rail fence cipher remains equal to the length of plain-

text message. And the key corresponds to the number of rails.

• Hence, rail matrix can be constructed accordingly. Once we’ve got the matrix we can figure-out

the spots where texts should be placed (using the same way of moving diagonally up and down

alternatively).

• Then, we fill the cipher-text row wise. After filling it, we traverse the matrix in zig-zag manner to

obtain the original text.

Implementation:

Let cipher-text = “GsGsekfrek eoe” , and Key = 3

• Number of columns in matrix = len(cipher-text) = 13

• Number of rows = key = 3

Hence original matrix will be of 3*13 , now marking places with text as ‘*’ we get

* _ _ _ * _ _ _ * _ _ _ *

_ * _ * _ * _ * _ * _ *

_ _ * _ _ _ * _ _ _ * _

Program:

def rail_fence(text, key, mode):

if mode == "encrypt":

rail = [""] * key

index = 0

for i in range(len(text)):

rail[index] += text[i]

if index == key - 1:

direction = -1

elif index == 0:

direction = 1

index += direction

return "".join(rail)

elif mode == "decrypt":

rail = [""] * key

index = 0

for i in range(len(text)):

 Information Security

13

rail[index] += "*"

if index == key - 1:

direction = -1

elif index == 0:

direction = 1

index += direction

text_index = 0

for i in range(key):

for j in range(len(rail[i])):

if rail[i][j] == "*":

rail[i] = rail[i][:j] + text[text_index] + rail[i][j+1:]

text_index += 1

index = 0

plain_text = ""

for i in range(len(text)):

plain_text += rail[index][0]

rail[index] = rail[index][1:]

if index == key - 1:

direction = -1

elif index == 0:

direction = 1

index += direction

return plain_text

else:

return "Invalid mode. Mode must be either 'encrypt' or 'decrypt'."

text = input("Enter the input string: ")

key = int(input("Enter the key: "))

encrypted_text = rail_fence(text, key, "encrypt")

print("Encrypted text:", encrypted_text)

decrypted_text = rail_fence(encrypted_text, key, "decrypt")

print("Decrypted text:", decrypted_text)

Output:

 Information Security

14

Experiment – 3
Aim: Implement any two Symmetric algorithms using python script.

1) Data Encryption Standard (DES).

2) RSA encryption algorithm.

Description:

DES is a symmetric encryption system

DES is a symmetric encryption system that uses 64-bit blocks, 8 bits of which areused for parity

checks. The key therefore has a "useful" length of 56 bits, which means thatonly 56 bits are

actually used in the algorithm. The algorithm involves carrying out combinations, substitutions and
permutations between the text to be encrypted and the key, while making sure the operations can be

performed in both directions. The key is ciphered on64 bits and made of 16 blocks of 4 bits, generally
denoted k1 to k16. Given that "only" 56 bits are actually used for encrypting, there can be 256 different

keys.
The main parts of the algorithm are as follows:

• Fractioning of the text into 64-bit blocks

• Initial permutation of blocks

• Breakdown of the blocks into two parts: left and right, named L and R

• Permutation and substitution steps repeated 16 times

• Re-joining of the left and right parts then inverse initial permutation

Example:

Algorithm:
STEP-1: Read the 64-bit plain text.

STEP-2: Split it into two 32-bit blocks and store it in two different arrays.

STEP-3: Perform XOR operation between these two arrays.

STEP-4: The output obtained is stored as the second 32-bit sequence and the originalsecond 32-bit

sequence forms the first part.

STEP-5: Thus the encrypted 64-bit cipher text is obtained in this way. Repeat the sameprocess for the

remaining plain text characters.

Program:

from Crypto.Cipher import DES

 Information Security

15

from Crypto.Util.Padding import pad, unpad

def des_encrypt(plaintext, key):

Convert the key to bytes

key = bytes.fromhex(key)

Create a DES cipher object and encrypt the plaintext

cipher = DES.new(key, DES.MODE_ECB)

ciphertext = cipher.encrypt(pad(plaintext.encode('utf-8'), DES.block_size))

Convert the ciphertext to hexadecimal and return as string

return ciphertext.hex()

def des_decrypt(ciphertext, key):

Convert the key to bytes

key = bytes.fromhex(key)

Create a DES cipher object and decrypt the ciphertext

cipher = DES.new(key, DES.MODE_ECB)

decryptedtext = unpad(cipher.decrypt(bytes.fromhex(ciphertext)), DES.block_size)

Convert the decryptedtext to string and return

return decryptedtext.decode('utf-8')

plaintext = "Hello World!"

key = "133457799BBCDFF1"

Encrypt the plaintext using DES with the given key

ciphertext = des_encrypt(plaintext, key)

print("Ciphertext:", ciphertext)

Decrypt the ciphertext using DES with the given key

decryptedtext = des_decrypt(ciphertext, key)

print("Decrypted text:", decryptedtext)

Output:

Description:

RSA(Rivest-Shamir-Adleman) encryption algorithm

RSA is an algorithm used by modern computers to encrypt and decrypt messages. It is an

asymmetric cryptographic algorithm. Asymmetric means that there are two different keys. This is

also called public key cryptography, because one of them can be given toeveryone. A basic principle

behind RSA is the observation that it is practical to find threevery large positive integers e, d

and n such that with modular exponentiation for all integer m:

(me)d = m (mod n)
The public key is represented by the integers n and e; and, the private key, by the integer d.

m represents the message. RSA involves a public key and a private key. The public key can be known

by everyone and is used for encrypting messages. The intention is that messages encrypted with the

public key can only be decrypted in a reasonable amount oftime using the private key.

 Information Security

16

Example:

Algorithm:

The RSA algorithm is a widely used public-key encryption algorithm named after its inventors Ron

Rivest, Adi Shamir, and Leonard Adleman. It is based on the mathematical concepts of prime

factorization and modular arithmetic.

The algorithm for RSA is as follows:

1. Select 2 prime numbers, preferably large, p and q.

2. Calculate n = p*q.

3. Calculate phi(n) = (p-1)*(q-1)

4. Choose a value of e such that 1<e<phi(n) and gcd(phi(n), e) = 1.

5. Calculate d such that d = (e^-1) mod phi(n).

Here the public key is {e, n} and private key is {d, n}. If M is the plain text then the cipher text C =

(M^e) mod n. This is how data is encrypted in RSA algorithm. Similarly, for decryption, the plain text

M = (C^d) mod n.

Example: Let p=3 and q=11 (both are prime numbers).

• Now, n = p*q = 3*11 = 33

• phi(n) = (p-1)*(q-1) = (3-1)*(11-1) = 2*10 = 20

• Value of e can be 7 since 1<7<20 and gcd(20, 7) = 1.

• Calculating d = 7^-1 mod 20 = 3.

• Therefore, public key = {7, 33} and private key = {3, 33}.

Suppose our message is M=31. You can encrypt and decrypt it using the RSA algorithm as follows:

Encryption: C = (M^e) mod n = 31^7 mod 33 = 4

Decryption: M = (C^d) mod n = 4^3 mod 33 = 31

Since we got the original message that is plain text back after decryption, we can say that the algorithm

worked correctly.

Program:

import math

step 1

p = 3

 Information Security

17

q = 7

step 2

n = p*q

print("n =", n)

step 3

phi = (p-1)*(q-1)

step 4

e = 2

while(e<phi):

if (math.gcd(e, phi) == 1):

break

else:

e += 1

print("e =", e)

step 5

k = 2

d = ((k*phi)+1)/e

print("d =", d)

print(f'Public key: {e, n}')

print(f'Private key: {d, n}')

plain text

msg = 11

print(f'Original message:{msg}')

encryption

C = pow(msg, e)

C = math.fmod(C, n)

print(f'Encrypted message: {C}')

decryption

M = pow(C, d)

M = math.fmod(M, n)

print(f'Decrypted message: {M}')

Output:

 Information Security

18

Experiment – 4
Aim: Implement any two Private -Key based algorithms using python script.

1) Triple DES (3DES).

2) AES (Advanced Encryption Standard).

Description:

Private-key based algorithms in Information Security are also known as symmetric key algorithms. They

use a single key for both encryption and decryption, and the same key must be kept secret by both the

sender and the receiver in order to maintain the security of the communication. Here are some

commonly used private-key based algorithms in IS:

1) Advanced Encryption Standard (AES)

AES is a widely used symmetric key algorithm that uses a block cipher with a block size of 128

bits and a key size of 128, 192, or 256 bits. It is known for its speed and resistance to attacks, and

is widely used in applications such as secure communication and data storage.

2) Triple DES (3DES)

3DES is a variant of DES that uses three rounds of encryption with three different keys. It uses a

block size of 64 bits and a key size of 168 bits (three 56-bit keys). While 3DES is more secure

than DES, it is slower and less efficient than AES.

Program:

AES Encryption and Decryption

AES (Advanced Encryption Standard) is a symmetric key encryption algorithm that is widely

used to protect data. Here is an implementation of AES encryption and decryption using Python:

Code:

from Crypto.Cipher import AES

from Crypto.Util.Padding import pad, unpad

Generate random key and IV

key = b'secretkey1234567'

iv = b'iv12345678901234'

Encrypt message

message = b"Hello, world!"

cipher = AES.new(key, AES.MODE_CBC, iv)

ciphertext = cipher.encrypt(pad(message, AES.block_size))

Decrypt message

cipher = AES.new(key, AES.MODE_CBC, iv)

plaintext = unpad(cipher.decrypt(ciphertext), AES.block_size)

print("Encrypted message:", ciphertext)

print("Decrypted message:", plaintext)

Output:

 Information Security

19

Triple DES or 3 DES Encryption and Decryption

DES (Data Encryption Standard) is a symmetric key encryption algorithm that is widely used to

protect data. Here is an implementation of DES encryption and decryption using

Python Code:

from Crypto.Cipher import DES3

from Crypto.Random import get_random_bytes

while True:

try:

key = DES3.adjust_key_parity(get_random_bytes(24))

break

except ValueError:

pass

def encrypt(msg):

cipher = DES3.new(key, DES3.MODE_EAX)

nonce = cipher.nonce

ciphertext = cipher.encrypt(msg.encode('ascii'))

return nonce, ciphertext

def decrypt(nonce, ciphertext):

cipher = DES3.new(key, DES3.MODE_EAX, nonce=nonce)

plaintext = cipher.decrypt(ciphertext)

return plaintext.decode('ascii')

nonce, ciphertext = encrypt(input('Enter a message: '))

plaintext = decrypt(nonce, ciphertext)

print(f'Cipher text: {ciphertext}')

print(f'Plain text: {plaintext}')

Output:

 Information Security

20

Experiment – 5
Aim : Explore any four network diagnosis tools.

Description:

Network diagnosis tools are software applications or hardware devices that are used to identify and

troubleshoot problems on a computer network. These tools are designed to help network administrators

and IT professionals diagnose network issues, identify network threats, and optimize network

performance.

Network diagnosis tools can take many forms, ranging from simple command-line utilities to complex

graphical user interfaces. Some common types of network diagnosis tools include:

1. Ping and Traceroute: These command-line utilities are used to test network connectivity and

identify network routing issues.

2. Network protocol analyzers: These tools capture and display network traffic in real-time,

allowing network administrators to troubleshoot network protocols and identify network threats.

3. Network scanners: These tools scan a network for open ports and vulnerable systems, allowing

administrators to identify potential security risks.

4. Performance monitoring tools: These tools monitor network traffic and performance metrics,

allowing administrators to identify performance bottlenecks and optimize network performance.

5. Configuration management tools: These tools are used to manage and automate network device

configurations, allowing administrators to enforce network policies and ensure consistent

network configuration.

Overall, network diagnosis tools are essential for maintaining the health and security of computer

networks. By using these tools to identify and troubleshoot network issues, administrators can minimize

downtime, improve network performance, and ensure the integrity of network data.

Tools:

1. Ping Tools

The ICMP ping tool is a basic network troubleshooting tool that lets you assess if a device is reachable

on the network. It reports on errors such as packet loss, round-trip-time, etc.

 Information Security

21

The usual ping requests are based on the ICMP echo request protocol. There are other variations of ping

requests such as SNMP ping and proxy ping.

SNMP ping: It is used to check if the simple network management protocol (SNMP) is enabled in a

network device. If SNMP is enabled, the device responds with a set of basic information such as DNS

name, system name, location, system type, system description, etc.

Proxy ping: This is used to ping a destination device behind a proxy. Basically, the pinging device

sends an SNMP SET command to the proxy router to send an ICMP echo request to the destination

device. The response is collected by the proxy device. This response is fetched using the SNMP GET

command. This ping also requires SNMP to be enabled in the proxy device with the write community

string enabled.

These ping commands are useful to diagnose IP problems and network connectivity issues that could be

due to faulty interfaces, LAN issues, unavailable ports, configuration issues, etc., and are mostly used in

combination with the traceroute network troubleshooting utility.

 Information Security

22

2. Tracert/ Trace Route

Tracert (Windows) or traceroute (Linux) is a network diagnostic and troubleshooting tool to view the

route and measure transit delays of data packets in a network. It displays the number of hops between

the source and destination devices based on the hop limit concept, modifying the Time To Live (TTL)

values.

A traceroute tool is useful to identify response delays (high latency), routing loops and points of failure

or packet loss in a network.

Traceroute is a command-line tool that is used to identify the route taken by packets as they

travel between two devices on a network. It sends a series of packets to the target device with increasing

time-to-live (TTL) values. Each packet is then returned by the next device on the route, along with the

time taken for the packet to travel between the devices. Traceroute is commonly used to diagnose

network routing issues and to identify the location of network congestion.

3 .Netsat

Netstat is a command-line tool that is used to display network connection statistics for a device. It

shows active connections, listening ports, and network interface statistics, among other things.

Netstat is commonly used to diagnose network connectivity issues and to identify suspicious

network activity.

The netstat command is a highly practical tool for network diagnostics, configurations, and other

port-scanning activities. More specifically, system administrators use it for network troubleshooting

and performance diagnostics.

The netstat command works on Microsoft Windows, Linux, Unix, FreeBSD, and more. Therefore,

all the commands in this article will produce the same results irrespective of your operating system,

unless otherwise stated for Linux.

https://www.manageengine.com/network-monitoring/traceroute-tool.html?nwt

 Information Security

23

The Linux operating system comes with a considerable number of built-in capabilities pre-installed.

Depending on their level of expertise, users may not be fully aware of the capabilities of a particular

command. This article provides the basics of netstat and how to troubleshoot network issues with it

Functions

We will learn how the netstat command functions by seeing its commonly used applications. We

will see how to generate routing information, network interface statistics, or run port-scanning

operations with the command. It might be a good idea to take notes on the most frequently recurring

options and what they do, because they will come in handy while working with other commands.
Displaying kernel routing table

Using the netstat command with the -r option lists the kernel routing information in the same way as

with the route command.

Note that the additional -n option is used to disable hostname lookup. It configures

the netstat command to display addresses as dot-separated quad IP numbers instead of host and

network names in the form of symbols.

4. Telnet/ SSH

Telnet or Secure Shell (SSH) utility allows you to troubleshoot issues by establishing a CLI session with

Linux/Unix devices.

It is a simple yet effective network troubleshooting tool that enables you to act on any alert by executing

CLI commands to remediate L1/L2 network problems.

 Information Security

24

Experiment – 6

 Information Security

25

 Information Security

26

 Information Security

27

 Information Security

28

 Information Security

29

 Information Security

30

 Information Security

31

 Information Security

32

Experiment – 7

 Information Security

33

 Information Security

34

 Information Security

35

 Information Security

36

 Information Security

37

 Information Security

38

 Information Security

39

 Information Security

40

 Information Security

41

 Information Security

42

 Information Security

43

 Information Security

44

1. Aim: Use of iptables in linux

Experiment – 8

2. Objectives: To study how to create iptables in linux.

3. Theory:

iptables is a command line interface used to set up and maintain tables for the Netfilter firewall for IPv4,

included in the Linux kernel. The firewall matches packets with rules defined in these tables and then

takes the specified action on a possible match.

Tables is the name for a set of chains.

Chain is a collection of rules.

Rule is condition used to match packet.

Target is action taken when a possible rule matches. Examples of the target are ACCEPT, DROP,

QUEUE.

Policy is the default action taken in case of no match with the inbuilt chains and can be ACCEPT or

DROP.

Syntax:

iptables --table TABLE -A/-C/-D... CHAIN rule --jump Target

TABLE

There are five possible tables:

filter: Default used table for packet filtering. It includes chains like INPUT, OUTPUT and FORWARD.

nat : Related to Network Address Translation. It includes PREROUTING and POSTROUTING chains.

mangle : For specialised packet alteration. Inbuilt chains include PREROUTING and OUTPUT.

raw : Configures exemptions from connection tracking. Built-in chains are PREROUTING and

OUTPUT.

security : Used for Mandatory Access Control

CHAINS

There are few built-in chains that are included in tables. They are:

• INPUT :set of rules for packets destined to localhost sockets.

• FORWARD :for packets routed through the device.

• OUTPUT :for locally generated packets, meant to be transmitted outside.

• PREROUTING :for modifying packets as they arrive.

• POSTROUTING :for modifying packets as they are leaving

OPTIONS

1. -A, –append : Append to the chain provided in parameters.

Syntax: iptables [-t table] --append [chain] [parameters]

Example: This command drops all the traffic coming on any port.

iptables -t filter --append INPUT -j DROP Output:

 Information Security

45

2. -D, –delete : Delete rule from the specified chain.

Syntax: iptables [-t table] --delete [chain] [rule_number]

Example: This command deletes the rule 2 from INPUT chain.

iptables -t filter --delete INPUT 2

Output:

1. iptables -t filter --check INPUT -s 192.168.1.123 -j DROP

2. Output:

PARAMETERS

The parameters provided with the iptables command is used to match the packet and perform the

specified action. The common parameters are:

1. -p, –proto : is the protocol that the packet follows. Possible values maybe: tcp, udp, icmp, ssh

etc.

Syntax: iptables [-t table] -A [chain] -p {protocol_name} [target]

Example: This command appends a rule in the INPUT chain to drop all udp packets.

iptables -t filter -A INPUT -p udp -j DROP

Output:

2. -s, –source: is used to match with the source address of the packet.

Syntax: iptables [-t table] -A [chain] -s {source_address} [target]

 Information Security

46

Example: This command appends a rule in the INPUT chain to accept all packets originating from

192.168.1.230.

iptables -t filter -A INPUT -s 192.168.1.230 -j ACCEPT

Output:

3. -d, –destination : is used to match with the destination address of the packet.

Syntax: iptables [-t table] -A [chain] -d {destination_address} [target]

Example: This command appends a rule in the OUTPUT chain to drop all packets destined for

192.168.1.123.

iptables -t filter -A OUTPUT -d 192.168.1.123 -j DROP

Output:

4. -i, –in-interface : matches packets with the specified in-interface and takes the action.

Syntax:

iptables [-t table] -A [chain] -i {interface} [target]

Example: This command appends a rule in the INPUT chain to drop all packets destined for

wireless interface.

iptables -t filter -A INPUT -i wlan0 -j DROP

 Information Security

47

Output:

5. -o, –out-interface : matches packets with the specified out-interface.

6. -j, –jump : this parameter specifies the action to be taken on a match.

Syntax: iptables [-t table] -A [chain] [parameters] -j {target}

Example: This command adds a rule in the FORWARD chain to drop all packets.

iptables -t filter -A FORWARD -j DROP

Output:

• While trying out the commands, you can remove all filtering rules and user created chains.

• sudo iptables --flush

• To save the iptables configuration use:

sudo iptables-save

• Restoring iptables config can be done with:

sudo iptables-restore

4. Conclusion:

There are many other firewall utilities and some that may be easier, but iptables is a good learning

tool, if only because it exposes some of the underlying netfilter structure and because it is present in

so many systems.

 Information Security

48

Experiment – 9
AIM:To demonstrate Intrusion Detection System (IDS) using Snort software tool.

STEPS ON CONFIGURING AND INTRUSION DETECTION:

1. Download Snort from the Snort.org website. (http://www.snort.org/snortdownloads)

2. Download Rules(https://www.snort.org/snort-rules). You must register to get the rules. (You should

download these often)

3. Double click on the .exe to install snort. This will install snort in the “C:\Snort” folder. It is important

to have WinPcap(https://www.winpcap.org/install/) installed

4. Extract the Rules file. You will need WinRAR for the .gz file.

5. Copy all files from the “rules” folder of the extracted folder. Now paste the

rules into “C:\Snort\rules” folder.

6. Copy “snort.conf” file from the “etc” folder of the extracted folder. You must

paste it into “C:\Snort\etc” folder. Overwrite any existing file. Remember if you modify your snort.conf

file and download a new file, you must modify it for

Snort to work.

7. Open a command prompt (cmd.exe) and navigate to folder “C:\Snort\bin”

folder. (at the Prompt, type cd\snort\bin)

8. To start (execute) snort in sniffer mode use following command:

snort -dev -i 3

-i indicates the interface number. You must pick the correct interface number. In

my case, it is 3.

-dev is used to run snort to capture packets on your network.

To check the interface list, use following command:

snort -W

Finding an interface

You can tell which interface to use by looking at the Index number and finding

Microsoft. As you can see in the above example, the other interfaces are for

VMWare. My interface is 3.

9. To run snort in IDS mode, you will need to configure the file “snort.conf”

according to your network environment.

10. To specify the network address that you want to protect in snort.conf file, look for the following line.

var HOME_NET 192.168.1.0/24 (You will normally see any here)

11. You may also want to set the addresses of DNS_SERVERS, if you have some on your network.

Example:

http://www.snort.org/snortdownloads)
http://www.snort.org/snort-rules)
http://www.snort.org/snort-rules)
http://www.winpcap.org/install/)

 Information Security

49

example snort

12. Change the RULE_PATH variable to the path of rules folder.

var RULE_PATH c:\snort\rules

path to rules

13. Change the path of all library files with the name and path on your system. and

you must change the path of snort_dynamicpreprocessorvariable.

C:\Snort\lib\snort_dynamiccpreprocessor

You need to do this to all library files in the “C:\Snort\lib” folder. The old path might be:

“/usr/local/lib/…”. you will need to replace that path with your system

path. Using C:\Snort\lib

14. Change the path of the “dynamicengine” variable value in the “snort.conf” file..

Example:

dynamicengine C:\Snort\lib\snort_dynamicengine\sf_engine.dll

15. Add the paths for “include classification.config” and “include reference.config”

files.

include c:\snort\etc\classification.config

include c:\snort\etc\reference.config

16. Remove the comment (#) on the line to allow ICMP rules, if it is commented

with a #.

include $RULE_PATH/icmp.rules

17. You can also remove the comment of ICMP-info rules comment, if it is

commented.

include $RULE_PATH/icmp-info.rules

18. To add log files to store alerts generated by snort, search for the “output log”

test in snort.conf and add the following line:

output alert_fast: snort-alerts.ids

19. Comment (add a #) the whitelist $WHITE_LIST_PATH/white_list.rules and

the blacklist

Change the nested_ip inner , \ to nested_ip inner #, \

20. Comment out (#) following lines:

#preprocessor normalize_ip4

#preprocessor normalize_tcp: ips ecn stream

#preprocessor normalize_icmp4

#preprocessor normalize_ip6

#preprocessor normalize_icmp6

21. Save the “snort.conf” file.

22. To start snort in IDS mode, run the following command:

snort -c c:\snort\etc\snort.conf -l c:\snort\log -i 3

(Note: 3 is used for my interface card)

If a log is created, select the appropriate program to open it. You can use

WordPard or NotePad++ to read the file.

To generate Log files in ASCII mode, you can use following command while

running snort in IDS mode:

snort -A console -i3 -c c:\Snort\etc\snort.conf -l c:\Snort\log -K ascii

23. Scan the computer that is running snort from another computer by using PING or NMap (ZenMap).

After scanning or during the scan you can check the snort-alerts.ids file in the log folder to insure it is

 Information Security

50

logging properly. You will see IP address folders appear.

Snort monitoring traffic –

RESULT:

Thus the Intrusion Detection System(IDS) has been demonstrated by using

the Open Source Snort Intrusion Detection Tool.

VIVA VOICE

1. What is information security, and why is it important in today's digital age?

2. Can you explain the CIA triad in the context of information security?

3. Describe different types of security threats that organizations commonly face.

4. What is the role of encryption in ensuring data security? Can you explain different encryption

techniques?

5. How do firewalls contribute to network security? What are the different types of firewalls?

6. Discuss the importance of access control in information security. What are the different access

control models?

7. Explain the concept of authentication and its significance in information security.

8. What are the main differences between symmetric and asymmetric encryption algorithms?

9. Describe common social engineering techniques used to breach security and how to prevent

them.

10. How does a Distributed Denial of Service (DDoS) attack work, and what measures can be taken

to mitigate it?

11. What are the best practices for securing wireless networks?

12. Explain the concept of digital signatures and their role in ensuring data integrity and authenticity.

13. What is a vulnerability assessment, and how does it differ from penetration testing?

14. Discuss the importance of security policies and procedures in an organization.

15. How do encryption protocols like SSL/TLS contribute to securing communication over the

internet?

16. Can you explain the concept of risk management in information security? What are the steps

involved?

17. Describe the main principles of secure software development.

18. How does biometric authentication work, and what are its advantages and disadvantages?

19. What are the ethical considerations in information security, especially regarding privacy and data

protection?

20. Discuss the emerging trends and challenges in information security, such as IoT security, AI-

based threats, and quantum computing implications.

